typical of OTeF_s derivatives^{14,15} and is in reasonable agreement with the data reported for this compound.¹⁶

The Lewis acidity of AsF_3 is limited to isolable adducts formed with alkali metal fluorides.¹⁷ The As F_4^- anion (local C_{2v} symmetry) has been structurally characterized in KAs_2F_7 .¹⁸ Using ¹⁹F NMR spectroscopy, we have found that $As(OTeF₅)$, forms adducts with Lewis bases such as $CH₃CN$, Cl⁻, and $OTEF₅$:19-21

values with Lewis bases such as
$$
Ch_3CN
$$
, Cl ,

\n
$$
S_5^{-19-21}
$$
\nQTeF₅

\nAs(OTeF₅)₃ + B

\n
$$
\begin{array}{c|c|c}\n & \text{OTeF}_5 \\
 & \text{ASC} & \text{OTeF}_5 \\
 & \text{OTeF}_5\n \end{array}
$$
\nor $l_{\text{AS}}^{16} < OTeF_5$

\nQTeF₅

\nQTeF₅

\n
$$
\begin{array}{c|c|c}\n & \text{OTeF}_5 \\
 & \text{OTeF}_5\n \end{array}
$$
\nQTeF₅

\nQTeF₅

\n
$$
\begin{array}{c|c|c}\n & \text{OTeF}_5 \\
 & \text{OTeF}_5\n \end{array}
$$

The equilibrium constant, *K*, is large for $B = CI^{-}$ and $OTeF₅$ and is ~ 0.07 M⁻¹ for B = CH₃CN. The equilibrium shown above is slowly maintained on the ¹⁹F NMR time scale for B $= CH₃CN$ and OTeF₅⁻, as evidenced by sharp (line widths \sim 15 Hz) AB₄ resonances due to free As(OTeF₅)₃ and free (excess) OTeF₅⁻, respectively, in these experiments. The AB_4 resonances due to $As(OTeF_s)₃(CH_sCN)$ and $As(OTeF_s)_a$, on the other hand, are considerably broader, most probably because of intramolecular exchange (pseudorotation of the axial and equatorial OTeF_5 groups in these adducts) that is insufficiently rapid to yield fast-exchange limit spectra.²² Similarly, the AB_4 spectrum of $As(OTeF_5)_3Cl^-$ (see Figure 1 (bottom)) is also broad (line widths \sim 45 Hz at 22 °C) and broadens further as the temperature is lowered. However, a mixture of As(OTeF₅)₃ and As(OTeF₅)₃Cl⁻ (~50:50) exhibits a sharp ¹⁹F NMR spectrum (line width \sim 15 Hz):²³ the OTeF, groups of the two species are rapidly interconverting. While it is possible that the equilibrium shown above is faster for $B = CI^-$ than for $B = CH_3CN$ and $OTeF_5^-$, we suggest the following exchange mechanism, which has no parallel for $As(OTeF₅)₃(CH₃CN)$ or $As(OTeF₅)₄$ because the OTeF₅

group has never been observed to bridge two elements:⁵⁻⁷
As(OTeF₅)₃ + As(OTeF₅)₃Cl⁻
$$
\xrightarrow{\text{right}}
$$

$$
\left[\begin{matrix}\nCteF_5 \\
F_5TeO\n\end{matrix}\right]^{\text{CTeF}_5}\left[\begin{matrix}\nCteF_5 \\
\text{right} \\
\text{OTeF}_5\n\end{matrix}\right]^{\text{A}\text{s}}\text{OTeF}_5
$$

This type of intermolecular halogen exchange is not unexpected and has been suggested for species such as $TeF₄,²⁴ SeF₄,²⁴$ and

- Seppelt, K. *Z. Anorg. Allg. Chem.* 1973, 399,65-72.
- Engelbrecht, A.; Sladky, F. *Int.* Rev. *Sci.: Inorg. Chem., Ser. Two* 1975, 3, 137-176.
- ¹⁹F NMR (338.8 MHz, CH₂Cl₂ (CFCl₃ internal standard), 22 °C):
AB₄X pattern (X = ¹²⁵Te, 7.0% NA, $I = \frac{1}{2}$) δ_A -43.3, δ_B -34.8 (J_{AB}
= 180 Hz, J_{AX} = 3609 Hz, J_{BX} = 3690 Hz); lit.¹⁴ (neat CFCl chemical shifts of other teflates (including $HOTeF_5$, $B(OTeF_5)$ ₃, $CH_3CN·B(OTeF_5)_3$, and $Hg(OTeF_5)_2$) in CH_2Cl_2 (CFCI, internal standard) are consistently a few ppm downfield of those **reported14** for the same compounds in neat CFC13: Abney, **K.** D.; Strauss, **S.** H., unpublished data, 1983. -47.6 , $\delta_B -37.5$ *(J_{AB}* = 193 Hz, \hat{J}_{AX} = 3568 Hz, J_{BX} = 3643 Hz); ht.¹⁵ (solvent unspecified) $\delta_A -45.2$, $\delta_B -36.1$ (J_{AB} = 178 Hz). The ¹⁹F
- Muetterties, E.; Phillips, W. D. *J. Am. Chem.* **SOC.** 1957, 79, 3686-7. Edwards, A. J.; Patel, **S.** N. *J. Chem.* **Soc.,** *Drrlton Tram.* **1980,** 1630-2.
-
- (19) Cl⁻ and OTeF₅⁻ were added as $P(n-Bu)_4^+Cl^-$ and $PPN^+OTeF_5^-$, re-spectively.
- Electronegativity considerations alone would favor the first structure shown for $B = CH₃CN$ and $Cl⁻²¹$ However, note that matrix-isolated PF₃Cl⁻ probably has an axial chlorine: Wermer, P.; Ault, B. S. *Inorg. Chem.* 1981, 20, 970-3.
- (21) Burdett, J. "Molecular Shapes"; Wiley-Interscience: New York, 1980; pp 105–8.
The compound Te(OTeF₅)₄, which is probably isostructural with As-
- (22) (OTeF₅)₄⁻, also undergoes rapid intramolecular exchange at room tem-
perature: Lentz, D.; Pritzkow, H.; Seppelt, *K. Inorg. Chem.* 1978, 17, 1926-31. *See* also ref 11.
- (23) The two expected sets of AB_4 resonances are exchange averaged to yield a single resonance: the average δ_A and δ_B are apparently accidentally isochronous.

 $\text{As}_2\text{F}_3(\text{SO}_3\text{F})_3^{25}$ and for $\text{BF}_3/\text{SF}_4^{26}$ and $\text{AsF}_3/\text{SbF}_5^{17}$ mixtures.

We have also found that the compounds $As(OTeF₅)₃$ and AsF3 exhibit parallel chemical behavior *in* addition *to* their Lewis acidity: both can function as π -acids with low-valent transition metals. In the series of compounds $CpMn(CO)_{3}$, $CpMn(CO)₂(PF₃)$, and $CpMn(CO)₂(AsF₃)$, it was shown that AsF₃ is a stronger π -acid than PF₃.²⁷ Addition of As(OTeF₅)₃ or PF_3 to $W(\overline{CO})_5$ (THF) in THF solvent produces new infrared spectra with the concomitant disappearance of the $W(CO)$ ₅(THF) spectrum (cm⁻¹):²⁸ $W(CO)$ ₅(As(OTeF₅)₃) 2107 (Al, w), 2004 (A,, m), **1975** (E, **s);** W(CO),(PF,) 2101 (A_1, w) , \sim 2005 (A_1, sh) , 1975 (E, s) . While detailed infrared studies of σ -donor vs. π -acceptor properties of ligands L are not complete for W(CO),L, our data clearly show that the π -acidity of As(OTeF₅)₃ and PF₃ are at least approximately equal.

The reactivity of a given metal complex is strongly dependent on the electronic and steric properties of its array of ligands. Frequently the two types of effects are inseparable, but it is well recognized that steric properties can be as important or more important than electronic properties in some cases.29 Despite all of the elegant work that has been done with bulky trialkyl- and triarylphosphines and trialkyl and triaryl phosphites, the very recent synthesis of $Fe(CO)_{4} [P(O-V)]$ $C(CF_3)_2CN$ ₃]³⁰ is the only other literature report of a metal complex with a bulky π -acid phosphine or arsine. We are continuing to study the σ - and π -acidity of As(OTeF₅)₃ and $P(OTeF₅)₃$.

Acknowledgment is made to the Research Corp. and to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for the support of this research. We thank Professor K. Seppelt for helpful comments concerning the synthesis of HOTeF,, Professors D. E. Leyden and J. R. Norton for the use of their IR spectrometers, and C. E. Bronniman for recording the 19 F NMR spectra, which were obtained in the Colorado State University Regional NMR Center, funded by National Science Foundation Grant No. CHE-8208821.

Registry No. As(OTeF₅)₃(CH₃CN), 88548-68-9; As(OTeF₅)₄⁻, 88548-69-0; As(OTeF₅)₃CI⁻, 88548-70-3; W(CO)₅(As(OTcF₅)₃), As(OTeF₅)₃, 50652-21-6. 88548-71-4; W(CO)₅(THF), 36477-75-5; W(CO)₅(PF₃), 18461-47-7;

- (24) Muetterties, E. L.; Phillips, W. D. *J. Am. Chem.* **Soc.** 1959,81, 1084-8. (25) Muetterties, E. L.; Coffman, D. D. *J. Am. Chem. Soc.* 1958, 80,
- 5914-8. (26) (a) Oppegard, A. L.; Smith, W. C.; Muetterties, E. L.; Engelhardt, V. A. *J. Am. Chem. Soc.* **1960**, 82, 3835-8. (b) Cotton, F. A.; George, J. W. *J. Inorg. Nucl. Chem.* **1958**, 7, 397–403.
-
- (27) Muller, J.; Fender, K. *Angew. Chem., Int. Ed. Engl.* 1971, *10*, 418–9.
(28) W(CO)₅(THF) in THF (cm⁻¹): 1931 (E, s), 1891 (A_i, w).
- (29) (a) Tolman, C. A. *J. Am. Chem. Soc.* **1970**, 92, 2956–65. (b) Tolman, C. A. *Chem. Rev.* **1977**, 77, 313–48. (c) Parshall, G. W. "Homogeneous Catalysis"; Wiley-Interscience: New York, 1980; pp 10-2.
- (30) Bauer, D. P.; Ruff, J. K. *Inorg. Chem.* 1983, 22, 1686-9.

Received August 16, 1983

Redox Behavior of Fe4S4 Clusters Surrounded by Hydrophobic Groups, $[Fe_4S_4(SC_6H_4R-p)_4]^2$ ⁻ $(R = n-C_4H_9,$ $n-C_8H_{17}$, and $n-C_{12}H_{25}$), in Aqueous Micellar Solutions Sir:

Iron-sulfur proteins such as 4-Fe ferredoxins function as electron carriers in metabolism, and the active sites are known to be embedded in a hydrophobic environment of proteins.'

Figure 1. Cyclic voltammograms of $[Fe-C_8]^2$ in Me₂SO (a) and in an aqueous micellar solution **(pH 7.30)** (b) at a scanning rate of **0.2** $V s^{-1}$.

Another characteristic feature of the iron-sulfur proteins may involve hydrogen bonding between the NH group of peptide chains and the sulfur atom of the $Fe₄S₄$ core and/or the cysteine ligands.2 On the other hand, most of the synthetic $[Fe_4S_4X_4]^2$ ⁻ clusters $(X = S-t-Bu, SPh, Cl, etc.)$ are hardly soluble in water and only a few water-soluble $Fe₄S₄$ clusters surrounded by hydrophilic substituents have been prepared. The redox potentials of these synthetic clusters in organic solvents (for the water-insoluble clusters) are fairly negative compared with those of 4-Fe ferredoxins in water. This may correspond to the fact that destruction of the tertiary structure of peptide chains of ferredoxins upon a change of media from H₂O to Me₂SO-H₂O (8:2 v/v) results in a shift of redox potentials to more negative.³ Although the difference between the redox potentials of water-soluble synthetic clusters and 4-Fe ferredoxins in water is not so much (<80 mV) in some cases,³ the former are still more negative than the latter. This communication reports the electrochemical study on some synthetic $Fe₄S₄$ clusters surrounded by hydrophobic substituents in aqueous micellar solutions to understand the extrinsic effects on the redox potential of the $Fe₄S₄$ clusters.

The tetrabutylammonium salts of $[Fe_4S_4(SC_6H_4R-p)_4]^{2-}$ (R $= n-C_4H_9$, n-C₈H₁₇, and n-C₁₂H₂₅; abbreviated as [Fe-C₄]²⁻, $[Fe-C_8]^2$, and $[Fe-C_{12}]^2$, respectively)⁴ were synthesized by the reaction of FeCl₃, MeONa, NaSH, and the appropriate p-alkylbenzenethiol obtained according to the literature⁵ in MeOH, followed by treatment with $n-Bu₄NBr$ in a manner similar to that for $[n-Bu_4N]_2[Fe_4S_4(SC_6H_5)_4]$.⁶ An aqueous micellar solution of $[Fe-C_4]^2$, $[Fe-C_8]^2$, or $[Fe-C_{12}]^2$ was prepared by the addition of an $Me₂SO(1 cm³)$ solution of the cluster (5.8 μ mol) to a C₆H₄(COOH)(COOK)-NaOH (pH 4-6), KH₂PO₄-Na₂HPO₄ (pH 6-8), H₃BO₄-KCl-NaOH (pH 8-10), or $Na₂HPO₄-NaOH$ (pH >10) buffer solution (0.5) mol dm⁻³, 25 cm³) containing Triton X-100 ((6.3-24) \times 10⁻³ $cm³$).

Figure 1 shows the cyclic voltammograms of $[Fe-C_8]^{2-}$ in $Me₂SO$ and in an aqueous micellar solution at pH 7.3 on an Hg working electrode at 20 °C, with Et_4NBr and $KH_2P O_4$ -Na₂HPO₄ as supporting electrolytes, respectively. The

- **Hill, C. L.; Renaud, J.; Holm, R. H.; Mortenson, L. E.** *J. Am. Chem. SOC.* **1911, 99, 2549.**
- Anal. Calcd for [Fe-C₄]²⁻: C, 57.7; H, 8.35; N, 1.87. Found: C, 57.7; (4) H, 8.38; N, 1.80. Calcd for $[Fe-C_8]^2$: C, 61.4; H, 9.13; N, 1.63.
Found: C, 61.2; H, 8.91; N, 1.41. Calcd. for $[Fe-C_{12}]^2$: C, 64.2; H, 9.73; N, 1.44.
Neubert, M. E.; Laskos, S. J.; Griffith, R. F.; Stahl, M. E.; Maurer,
- (5)
- **Averill, B. A.; Herskovitz, T.; Holm, R. H.;** Ibers, **J. A.** *J. Am. Chem.* (6) **SOC. 1913,** *95,* **3523.**

Figure 2. Plot of the redox potential (V vs. SCE) of $[Fe-C_8]^2$ ⁻ vs. **pH** at 20 °C.

Table **1. Electrochemical Parameters for the Clusters** in **Aqueous Micellar Solutions at** 20 **"C**

cluster	FΔ	$dE/d(pH)^b$	$\mathfrak{d} K^b$	
[Fe-C ₄] ²⁻⁷³⁻ [Fe-C _s] ^{2-/3-}	-0.624 -0.625	-0.052 -0.059	9.44 9.07	
[Fe-C ₁₂] ^{2-/3-}	-0.646	-0.063	8.64	

a V vs. **SCE at pH** 7.00. ' **Estimated errors are +5%.**

appearance of a sharp anode peak (trace a in Figure 1) and a sharp cathode peak (trace b in Figure 1) may be due to the weak adsorption of $[Fe-C_8]^3$ ⁻ in Me₂SO and $[Fe-C_8]^2$ ⁻ in the micellar solution on an Hg electrode, respectively. The enhancement of these peak currents may arise from an electron transfer involving the adsorbed clusters at nearly the same potential as the normal electron transfer.⁷ The redox potentials of the process $(2-/3)$ are -1.10 V in Me₂SO and -0.64 V (vs. SCE) in the micellar solution;⁸ the latter value is compared to those of 4-Fe ferredoxins $(-0.280 \text{ to } -0.429)$ V vs. SHE^9) and 8-Fe ferredoxins $(-0.405$ to -0.490 V vs. SHE), determined by various equilibrium techniques.³

Although the redox potentials of the cluster in micellar solutions remained unchanged on the addition of various amounts of Triton X-100, they shifted to more positive with an increase in the proton concentration. A plot of the redox potential against pH (4-12) in micellar solutions is shown in Figure 2, which reveals that there is a linear relation with a slope of -0.059 V/pH unit in the range pH 4-9.¹⁰ In the pH values higher than 9, however, the redox potential is almost independent of pH, and two straight lines connecting the potential-pH plots intersect each other at pH 9.07. The change of the redox potentials of $[Fe-C_8]^{2-}$ with pH may be explained by the participation of protons in the redox reaction. If one assumes that *n* protons interact with $[Fe-C_8]^2$ - with an equilibrium constant K in micellar solutions (eq 1), the Nernst

$$
[Fe-C_8(H^+_{n})]^{2-} \stackrel{K}{\Longleftarrow} [Fe-C_8]^{2-} + nH^+ \qquad (1)
$$

2) can be written as eq 3 where E° and *F* are the formal $[Fe-C_8(H^+)]^{2-} + e^- = [Fe-C_8(H^+)]^{3-}$ (2) equation for the redox potential *(E)* of $[Fe-C_8(H^+)]^{2-3-}$ *(eq*

$$
[Fe-C_8(H^+_{n})]^{2-} + e^- \rightleftharpoons [Fe-C_8(H^+_{n})]^{3-}
$$
 (2)

$$
E =
$$

$$
E^{\circ} + \frac{RT}{F} \ln \frac{[Fe-C_8(H^+_{n})]^2}{[Fe-C_8]^{3-}} - \frac{2.303RT}{F}(n(pH) - pK) \tag{3}
$$

potential of an electrode and the Faraday constant, respec-

- **(8) The redox potential was approximated as an average of the cathode and** anode peak potentials, since the average was essentially constant (± 10 mV) irrespective of the sweep rate from 30 to 500 mV/s. (9) $E_{SHE} = E_{SCE} + 0.242$ V at 25 °C.
-
- **(10) A plot of the cathode peak potential at sweep rate 200 mV/s vs. pH also gives a linear relation with a slope of -0.059 V/pH unit in the range pH 4-9.**

Carter, C. W. 'Iron-Sulfur Proteins"; Lovenberg, W., Ed.; Academic

Press: New York, 1977; Vol. 111, pp 157-204. Stout, C. D. 'Iron-Sulfur Proteins", Spiro, T. G., Ed.; Academic Press: New York, 1982; Vol. IV, pp 99-139. (2)

⁽⁷⁾ Wopchall, R. H.; Shain, I. *Anal. Chem.* **1967, 39, 1514.**

tively. The differentiation of eq. 3 by pH gives $dE/d(pH)$ = *-0.058n* as a theoretical value for the slope of the *E* vs. pH plot at 20 \degree C. The theoretical value thus obtained is in good agreement with the experimental value, -0.059 V/pH unit when $n = 1$. The protonated and deprotonated species, [Fe- $C_8(H^+)]^{2-}$ and [Fe-C₈]²⁻, may, therefore, exist as an equilibrium mixture (eq. 1 with $n = 1$) in micellar solutions at pH lower than $9₁$ ¹¹ whereas the equilibrium of eq. 1 lies much farther to the right at pH higher than 9, where the redox potential remains essentially constant. The intersection of the two straight lines obtained from the redox potential vs. pH plot (Figure **2)** gives the pK value for the proton dissociation of $[Fe-C_8(H^+)]^{2-}$.

Similar electrochemical behaviors have been observed for the aqueous micellar solutions of $[Fe-C₄]²⁻$ and $[Fe-C₁₂]²⁻$. The electrochemical parameters for the three clusters are listed in Table I, which indicates that the pK values estimated from the plots of the redox potential vs. pH decrease with lengthening the alkyl chain of the thiolate ligands. The pK values obtained in the present micellar solutions are larger than those of $[Fe_4S_4(SCH_2CH(CH_3)_2)_4]^{2-}$ $(pK = 3.9)^{12}$ in N-methylpyrrolidinone-H₂O (6:4 v/v) and $[Fe_4S_4(SCH_2CH_2CO_2)_4]$ ⁶⁻ $(pK = 7.4)^{13}$ in water, which were obtained from the plots of the absorbance of electronic spectra vs. pH. It should be noted that the redox potentials of the present clusters are markedly influenced by the concentration of hydrogen ions in contrast to the situation for *Clostridium acidi-urici* and *Clostridium pasteurianum* ferredoxins, whose redox potentials have been reported not to vary so much with the change of pH (0.01 1-0.016 V/pH unit between pH *6.5* and 8.2).14 Such a large dependence of the redox potential on pH in the present study may reflect the lability of protons coordinated to the present clusters. This is also in striking contrast to the case for high-potential iron proteins, in which stable hydrogen bondings are formed between the NH group of peptide chains and the sulfur atom of the $Fe₄S₄$ core and/or the cysteine ligand. 15

Registry No. [Fe-C₄]²⁻, 72276-57-4; [Fe-C₈]²⁻, 88510-43-4; $[Fe-C₁₂]²⁻, 88510-44-5; [*n*-Bu₄N]₂ [Fe-C₄], 88510-45-6; [*n*-Bu₄N]₂$ $[Fe-C_8]$, 88510-46-7; $[n-Bu_4N]_2[Fe-C_{12}]$, 88510-47-8.

- 1) The present $[Fe-C_8]^2$ cluster in micellar solutions has undergone no hydrolysis reaction under anaerobic conditions, as confirmed from no change of the visible spectra for 10 h. This is in contrast to the case for Fe_4
- . **2)** Bruice, T. C.; Maskiewicz, R Job, R. C. *Proc.* Natl. *Acud. Sci. U.S.A.* **1975, 72, 23 1.**
- **(13)** Job, R. C.; Bruice, T. C. *Proc.* Natl. *Acud. Sci. U.S.A.* **1975,72,2478. (14)** Lode, **E.** T.; Murray, C. L.; Rabinowitz, J. C. *J. Eiol. Chem.* **1976,251, 1683.**
- **(IS)** Carter, **C.** W., Jr. J. *Biol. Chem.* **1977, 252,** *7802.*

Osaka Municipal Technical Research Institute Morinomiya, Higashiku, Osaka, Japan **Isao Kawafune**

Received *September* 8, *1983*

Synthesis of CF₃NBr₂ and CF₃NBrCl. Novel Metal **Fluoride Promoted Conversion of N-CI Bonds to N-Br Bonds**

Sir:

The synthesis of fluorinated compounds containing the N,N-dichloro group is readily accomplished by the addition

Table **1.** Metal Fluoride Promoted Reactions of N-C1 with Br,

			products ^a		
N –Cl (amt ^a)	Br ₂ /MF ^a	,b	$CF -$ NBrCl	CF_{3} NBr,	
$CF, = NCl(2.0)$	$1.7/8.5$ (CsF)	11	0.4	0.6 ^c	
$CF = NCl (2.0)$	$4.0/9.2$ (CsF)	11	0.9	0.6 ^d	
$CF = NCl(2.0)$	$2.0/20$ (CsF)	12	0.8	d	
$CF_3NClBr(0.6)$	$10/10$ (CsF)	12		0.5 ^c	
CF, NClBr (0.5)	$10/20$ (CsF)	12		0.1 ^c	
CF, NCI, (1.0)	$10/10$ (CsF)	42	0.2	0.3 ^c	
$CF3NCI$, (1.0)	$10/20$ (CsF)	40	0.3	0.1 ^c	
CF, NCI, (0.9)	$10/10$ (KF)	40	0.4	$trace^c$	
CF ₃ NC1, (1.0)	$10/10$ (NaF)	40	0.5	с	
$CF3NCI2$ (1.0)	$10/10$ (LiF)	40	0.2	с	
CF, NC1, (1.0)	$10/10$ (CaF,)	40		C	

 a Amounts in millimoles. b Time in hours in the absence of light at 22 °C. \cdot Starting NCI recovered. \cdot Some CF₃NCl₂ formed.

of C1F to a variety of carbon-nitrogen multiple bonds.' For example, the following reactions proceed in high
ClCN + 2ClF \rightarrow ClCF₂NCl₂

$$
CICN + 2CIF \rightarrow CICF2NCI2
$$

R_fCN + 2CIF \rightarrow R_fCF₂NCI₂
CF₂=NCI + CIF \rightarrow CF₃NCI₂

We have recently shown that the cesium fluoride promoted chlorination of C-N multiple bonds with Cl_2 is also an effective method for the synthesis of the same compounds.⁵

$$
R_fCN + 2Cl_2 + 2CsF \rightarrow RCF_2NCl_2 + 2CsCl
$$

\n
$$
CF_2=NCl + Cl_2 + CsF \rightarrow CF_3CF_2NCl_2 + CsCl
$$

In related work, HgF_2 has also been shown to be effective in these transformations, where the HgF_2/Cl_2 mixture behaves as an in situ source of C1F.6 $CF_2=NCl + Cl_2 + CsF \rightarrow CF_3$
In related work, HgF_2 has also bee
in these transformations, where the Hg
as an in situ source of CIF.⁶
CICN + 2Cl₂ + $HgF_2 \xrightarrow{HgF_2} CF_3NCl_2/ClC$

$$
\text{CICN} + 2\text{Cl}_2 + \text{HgF}_2 \xrightarrow{\text{HgF}_2} \text{CF}_3\text{NCl}_2/\text{CICF}_2\text{NCl}_2 \ (3:1) + \text{HgCl}_2
$$
\n
$$
\text{CF}_3\text{CN} + 2\text{Cl}_2 + \text{HgF}_2 \rightarrow \text{CF}_3\text{CF}_2\text{NCl}_2 + \text{HgCl}_2
$$

The latter reaction could also be extended to $Br₂$ to yield both $CF₃CF₂NBr₂$ and $CF₃CF=NBr$ and represented the first example of a thermally stable $NBr₂$ derivative. Cesium fluoride is also effective in promoting the reaction of Br_2 with C-N multiple bonds, but in the case of nitriles the reaction stops at the imine. $5,7$

$$
\text{cft}_{3} \text{ at the time.}^{5,7}
$$
\n
$$
\text{CF}_{2} = \text{NF} + 2\text{Br}_{2} + \text{CsF} \rightarrow \text{CF}_{3}\text{NBrF} + \text{CsBr}_{3}
$$
\n
$$
\text{CF}_{3}\text{CN} + 2\text{Br}_{2} + \text{CsF} \rightarrow \text{CF}_{3}\text{CF} = \text{NBr} + \text{CsBr}_{3}
$$

We were interested in preparing the first example of a stable compound containing an -NClBr function, and we investigated the CsF-promoted reaction of Br_2 with $CF_2=NCl$.⁸ The reaction worked well, but to our surprise, CF_3NBr_2 was also formed. CF,=NCl - CF3NBrCl + CF3NBr2

$$
CF2=NC1 \xrightarrow{Br_2/CsF} CF_3NBrCl + CF_3NBr_2
$$

- **(1)** Schack, C. J.; Christe, K. 0. *IS'. J. Chem.* **1978, 17, 20.**
- **(2) Young,** D. **E.;** Anderson, L. R.; Fox, W. B. J. *Chem. SOC., Chem. Commun.* **1970, 395.**
- **(3)** Hynes, J. B.; Austin, T. E. *Inorg. Chem.* **1966,** *5,* **488.**
- **(4)** Swindell, R. **F.;** Zaborowski, L. M.; Shreeve, J. M. *Inorg. Chem.* **1971, 10, 1635.**
- **(5)** Chang, S.-C.; DesMarteau, D. D. *Znorg. Chem.* **1983, 22, 805. (6)** Waterfeld, A.; Mews, R. *J. Chem. Soc., Chem. Commun.* **1982, 839.**
- ported in: O'Brien, B. A.; DesMarteau, D. D., to be submitted for publication.
- (8) **As** far as we could determine, there are **no** reported examples of the isolation of -NBrCI derivatives.